Part Number Hot Search : 
74HC7 1102B B2566 ZX84C10 MAX38 EPA34 405DH3 ICS87004
Product Description
Full Text Search
 

To Download AT24C16B09 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 1. Features
* Low-voltage and Standard-voltage Operation
- 1.8 (VCC = 1.8V to 5.5V) Internally Organized 2048 x 8 (16K) Two-wire Serial Interface Schmitt Trigger, Filtered Inputs for Noise Suppression Bidirectional Data Transfer Protocol 1 MHz (5V, 2.5V), 400 kHz (1.8V) Compatibility Write Protect Pin for Hardware Data Protection 16-byte Page (16K) Write Modes Partial Page Writes Allowed Self-timed Write Cycle (5 ms max) High-reliability - Endurance: 1 Million Write Cycles - Data Retention: 100 Years * 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead Ultra-Thin Mini-MAP (MLP 2x3), 5-lead SOT23, 8-lead Ultra Lead Frame Land Grid Array (ULA), 8-lead TSSOP and 8-ball dBGA2 Packages * Lead-free/Halogen-free * Die Sales: Wafer Form, Tape and Reel, and Bumped Wafers
* * * * * * * * * *
Two-wire Serial EEPROM
16K (2048 x 8)
AT24C16B
2. Description
The AT24C16B provides 16384 bits of serial electrically erasable and programmable read-only memory (EEPROM) organized as 2048 words of 8 bits each. The device is optimized for use in many industrial and commercial applications where low-power and low-voltage operation are essential. The AT24C16B is available in space-saving 8-lead PDIP, 8-lead JEDEC SOIC, 8-lead Ultra Thin Mini-MAP (MLP 2x3), 5-lead SOT23, 8-lead Ultra Lead Frame Land Grid Array (ULA), 8-lead TSSOP, and 8-ball dBGA2 packages and is accessed via a Two-wire serial interface. In addition, the AT24C16B is available in 1.8V (1.8V to 5.5V) version. Table 2-1.
Pin Name NC SDA SCL WP GND VCC
Pin Configuration
Function No Connect Serial Data Serial Clock Input Write Protect Ground Power Supply
8-lead Ultra Thin Mini-MAP (MLP 2x3)
VCC WP SCL SDA 8 7 6 5 1 2 3 4 NC NC NC GND
8-ball dBGA2
VCC WP SCL SDA
8 7 6 5
NC NC 3 NC 4 GND
1 2
Bottom View 8-lead TSSOP
NC NC NC GND 1 2 3 4 8 7 6 5 VCC WP SCL SDA NC NC NC GND
Bottom View 8-lead SOIC
1 2 3 4 8 7 6 5 VCC WP SCL SDA
8-lead Ultra Lead Frame Land Grid Array (ULA)
VCC WP SCL SDA 8 7 6 5 1 2 3 4 NC NC NC GND
5-lead SOT23
SCL GND SDA 1 2 3 4 VCC 5 WP
8-lead PDIP
NC NC NC GND 1 2 3 4 8 7 6 5 VCC WP SCL SDA
5175E-SEEPR-3/09
Bottom View
Absolute Maximum Ratings
Operating Temperature..................................-55C to +125C Storage Temperature .....................................-65C to +150C Voltage on Any Pin with Respect to Ground .................................... -1.0V to +7.0V Maximum Operating Voltage .......................................... 6.25V DC Output Current........................................................ 5.0 mA *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Figure 2-1.
Block Diagram
VCC GND WP SCL SDA START STOP LOGIC
LOAD DEVICE ADDRESS COMPARATOR R/W COMP
SERIAL CONTROL LOGIC
EN
H.V. PUMP/TIMING
DATA RECOVERY INC X DEC EEPROM
LOAD
DATA WORD ADDR/COUNTER
Y DEC
SERIAL MUX
DIN DOUT
DOUT/ACK LOGIC
2
AT24C16B
5175E-SEEPR-3/09
AT24C16B
3. Pin Description
SERIAL CLOCK (SCL): The SCL input is used to positive edge clock data into each EEPROM device and negative edge clock data out of each device. SERIAL DATA (SDA): The SDA pin is bidirectional for serial data transfer. This pin is opendrain driven and may be wire-ORed with any number of other open-drain or open-collector devices. DEVICE/PAGE ADDRESSES: The AT24C16B does not use the device address pins, which limits the number of devices on a single bus to one. WRITE PROTECT (WP): The AT24C16B has a write protect pin that provides hardware data protection. The write protect pin allows normal read/write operations when connected to ground (GND). When the write protect pin is connected to VCC, the write protection feature is enabled and operates as shown in Table 3-1.
Table 3-1.
Write Protect
Part of the Array Protected
WP Pin Status At VCC At GND
24C16B Full (16K) Array Normal Read/Write Operations
4. Memory Organization
AT24C16B, 16K SERIAL EEPROM: Internally organized with 128 pages of 16 bytes each, the 16K requires an 11-bit data word address for random word addressing.
3
5175E-SEEPR-3/09
Table 4-1. Pin Capacitance(1) Applicable over recommended operating range from TA = 25C, f = 1.0 MHz, VCC = +1.8V
Symbol CI/O CIN Note: Test Condition Input/Output Capacitance (SDA) Input Capacitance (SCL) 1. This parameter is characterized and is not 100% tested. Max 8 6 Units pF pF Conditions VI/O = 0V VIN = 0V
Table 4-2. DC Characteristics Applicable over recommended operating range from: TAI = -40C to +85C, VCC = +1.8V to +5.5V (unless otherwise noted)
Symbol VCC1 ICC1 ICC2 ISB1 ILI ILO VIL VIH VOL1 VOL2 Notes: Parameter Supply Voltage Supply Current Supply Current Standby Current (1.8V option) Input Leakage Current VCC = 5.0V Output Leakage Current VCC = 5.0V Input Low Level(1) Input High Level
(1)
Test Condition
Min 1.8
Typ
Max 5.5
Units V mA mA A
VCC = 5.0V VCC = 5.0V VCC = 1.8V VCC = 5.5V VIN = VCC or VSS VOUT = VCC or VSS
READ at 400 kHz WRITE at 400 kHz VIN = VCC or VSS
1.0 2.0
2.0 3.0 1.0 6.0
0.10 0.05 -0.6 VCC x 0.7
3.0 3.0 VCC x 0.3 VCC + 0.5 0.2 0.4
A A V V V V
Output Low Level Output Low Level
VCC = 1.8V VCC = 3.0V
IOL = 0.15 mA IOL = 2.1 mA
1. VIL min and VIH max are reference only and are not tested.
4
AT24C16B
5175E-SEEPR-3/09
AT24C16B
Table 4-3. AC Characteristics (Industrial Temperature) Applicable over recommended operating range from TAI = -40C to +85C, VCC = +1.8V to +5.5V, CL = 100 pF (unless otherwise noted). Test conditions are listed in Note 2.
1.8-volt Symbol fSCL tLOW tHIGH tAA tBUF tHD.STA tSU.STA tHD.DAT tSU.DAT tR tF tSU.STO tDH tWR Endurance(1) Notes: Parameter Clock Frequency, SCL Clock Pulse Width Low Clock Pulse Width High Clock Low to Data Out Valid Time the bus must be free before a new transmission can start(1) Start Hold Time Start Set-up Time Data In Hold Time Data In Set-up Time Inputs Rise Time Inputs Fall Time
(1) (1)
2.5, 5.0-volt Min Max 1000 0.4 0.4 Units kHz s s 0.55 s s s s s ns 0.3 100 0.25 50 5 1,000,000 5 s ns s ns ms Write Cycles
Min
Max 400
1.3 0.6 0.05 1.3 0.6 0.6 0 100 0.3 300 0.6 50 0.9
0.05 0.5 0.25 0.25 0 100
Stop Set-up Time Data Out Hold Time Write Cycle Time 25C, Page Mode, 3.3V
1. This parameter is characterized and is not 100% tested. 2. AC measurement conditions: RL (connects to VCC): 1.3 k (2.5V, 5.0V), 10 k (1.8V) Input pulse voltages: 0.3 VCC to 0.7 VCC Input rise and fall times: 50 ns Input and output timing reference voltages: 0.5 VCC
5
5175E-SEEPR-3/09
5. Device Operation
CLOCK and DATA TRANSITIONS: The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods (see Figure 7-2 on page 8). Data changes during SCL high periods will indicate a start or stop condition as defined below. START CONDITION: A high-to-low transition of SDA with SCL high is a start condition which must precede any other command (see Figure 7-3 on page 8). STOP CONDITION: A low-to-high transition of SDA with SCL high is a stop condition. After a read sequence, the stop command will place the EEPROM in a standby power mode (see Figure 7-3 on page 8). ACKNOWLEDGE: All addresses and data words are serially transmitted to and from the EEPROM in 8-bit words. The EEPROM sends a zero to acknowledge that it has received each word. This happens during the ninth clock cycle. STANDBY MODE: The AT24C16B features a low-power standby mode which is enabled: (a) upon power-up and (b) after the receipt of the STOP bit and the completion of any internal operations. 2-WIRE SOFTWARE RESET: After an interruption in protocol, power loss or system reset, any 2-wire part can be protocol reset by following these steps: 1. Create a start bit condition. 2. Clock 9 cycles. 3. Create another start bit followed by stop bit condition as shown below.
Start bit Dummy Clock Cycles Start bit Stop bit
SCL
1
2
3
8
9
SDA
6
AT24C16B
5175E-SEEPR-3/09
AT24C16B
6. Bus Timing
Figure 6-1. SCL: Serial Clock, SDA: Serial Data I/O(R)
tF tHIGH tLOW tR
SCL
tSU.STA tHD.STA
tLOW
tHD.DAT
tSU.DAT
tSU.STO
SDA IN
tAA tDH tBUF
SDA OUT
7. Write Cycle Timing
Figure 7-1. SCL: Serial Clock, SDA: Serial Data I/O
SCL
SDA
8th BIT
ACK
WORDn twr STOP CONDITION
Note:
(1)
START CONDITION
1. The write cycle time tWR is the time from a valid stop condition of a write sequence to the end of the internal clear/write cycle.
7
5175E-SEEPR-3/09
Figure 7-2.
Data Validity
SDA
SCL DATA STABLE DATA CHANGE DATA STABLE
Figure 7-3.
Start and Stop Definition
SDA
SCL
START
STOP
Figure 7-4.
Output Acknowledge
SCL
1
8
9
DATA IN
DATA OUT
START
ACKNOWLEDGE
8
AT24C16B
5175E-SEEPR-3/09
AT24C16B
8. Device Addressing
The 16K EEPROM device requires an 8-bit device address word following a start condition to enable the chip for a read or write operation (refer to Figure 10-1). The device address word consists of a mandatory one, zero sequence for the first four most significant bits as shown. This is common to all the EEPROM devices. The next 3 bits used for memory page addressing and are the most significant bits of the data word address which follows. The eighth bit of the device address is the read/write operation select bit. A read operation is initiated if this bit is high and a write operation is initiated if this bit is low. Upon a compare of the device address, the EEPROM will output a zero. If a compare is not made, the chip will return to a standby state.
9. Write Operations
BYTE WRITE: A write operation requires an 8-bit data word address following the device address word and acknowledgment. Upon receipt of this address, the EEPROM will again respond with a zero and then clock in the first 8-bit data word. Following receipt of the 8-bit data word, the EEPROM will output a zero and the addressing device, such as a microcontroller, must terminate the write sequence with a stop condition. At this time the EEPROM enters an internally timed write cycle, tWR, to the nonvolatile memory. All inputs are disabled during this write cycle and the EEPROM will not respond until the write is complete (see Figure 10-2 on page 11). PAGE WRITE: The 16K EEPROM is capable of an 16-byte page write. A page write is initiated the same as a byte write, but the microcontroller does not send a stop condition after the first data word is clocked in. Instead, after the EEPROM acknowledges receipt of the first data word, the microcontroller can transmit up to fifteen data words. The EEPROM will respond with a zero after each data word received. The microcontroller must terminate the page write sequence with a stop condition (see Figure 10-3 on page 11). The data word address lower three bits are internally incremented following the receipt of each data word. The higher data word address bits are not incremented, retaining the memory page row location. When the word address, internally generated, reaches the page boundary, the following byte is placed at the beginning of the same page. If more than sixteen data words are transmitted to the EEPROM, the data word address will "roll over" and previous data will be overwritten.
ACKNOWLEDGE POLLING: Once the internally timed write cycle has started and the EEPROM inputs are disabled, acknowledge polling can be initiated. This involves sending a start condition followed by the device address word. The read/write bit is representative of the operation desired. Only if the internal write cycle has completed will the EEPROM respond with a zero allowing the read or write sequence to continue.
9
5175E-SEEPR-3/09
10. Read Operations
Read operations are initiated the same way as write operations with the exception that the read/write select bit in the device address word is set to one. There are three read operations: current address read, random address read and sequential read. CURRENT ADDRESS READ: The internal data word address counter maintains the last address accessed during the last read or write operation, incremented by one. This address stays valid between operations as long as the chip power is maintained. The address "roll over" during read is from the last byte of the last memory page to the first byte of the first page. The address "roll over" during write is from the last byte of the current page to the first byte of the same page. Once the device address with the read/write select bit set to one is clocked in and acknowledged by the EEPROM, the current address data word is serially clocked out. The microcontroller does not respond with an input zero but does generate a following stop condition (see Figure 10-4 on page 11). RANDOM READ: A random read requires a "dummy" byte write sequence to load in the data word address. Once the device address word and data word address are clocked in and acknowledged by the EEPROM, the microcontroller must generate another start condition. The microcontroller now initiates a current address read by sending a device address with the read/write select bit high. The EEPROM acknowledges the device address and serially clocks out the data word. The microcontroller does not respond with a zero but does generate a following stop condition (see Figure 10-5 on page 12). SEQUENTIAL READ: Sequential reads are initiated by either a current address read or a random address read. After the microcontroller receives a data word, it responds with an acknowledge. As long as the EEPROM receives an acknowledge, it will continue to increment the data word address and serially clock out sequential data words. When the memory address limit is reached, the data word address will "roll over" and the sequential read will continue. The sequential read operation is terminated when the microcontroller does not respond with a zero but does generate a following stop condition (see Figure 10-6 on page 12). Figure 10-1. Device Address
16 MSB P 2 P 1 P 0
10
AT24C16B
5175E-SEEPR-3/09
AT24C16B
Figure 10-2. Byte Write
Figure 10-3. Page Write
Figure 10-4. Current Address Read
11
5175E-SEEPR-3/09
Figure 10-5. Random Read
Figure 10-6. Sequential Read
12
AT24C16B
5175E-SEEPR-3/09
AT24C16B
AT24C16B Ordering Information
Ordering Codes Voltage 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
(2)
Package 8P3 8S1 8S1 8A2 8A2 8Y6 8D3 5TS1 8U3-1
Operating Range
AT24C16B-PU (Bulk Form Only) AT24C16BN-SH-B(1) (NiPdAu Lead Finish) AT24C16BN-SH-T AT24C16B-TH-B AT24C16B-TH-T
(2) (2)
(NiPdAu Lead Finish)
(1)
(NiPdAu Lead Finish) (NiPdAu Lead Finish) (NiPdAu Lead Finish)
AT24C16BY6-YH-T(2) (NiPdAu Lead Finish)
AT24C16BD3-DH-T
(2)
Lead-Free/Halogen-Free Industrial Temperature (-40C to 85C)
AT24C16BTSU-T
(2)
AT24C16BU3-UU-T AT24C16B-W-11(3)
Notes:
1.8 1.8
Die Sales
Industrial Temperature (-40C to 85C)
1. "-B" denotes bulk. 2. "-T" denotes tape and reel. SOIC = 4K per reel. TSSOP, Ultra Thin Mini MAP, SOT23, dBGA2 = 5K per reel. 3. Available in tape and reel, and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please contact Serial Interface Marketing.
Package Type 8P3 8S1 8A2 8Y6 5TS1 8U3-1 8D3 8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP) 8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC) 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP) 8-lead, 2.0 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Thin Mini-MAP, Dual No Lead Package (DFN), (MLP 2x3 mm) 5-lead, 2.90 mm x 1.60 mm Body, Plastic Thin Shrink Small Outline Package (SOT23) 8-ball, die Ball Grid Array Package (dBGA2) 8-lead, 1.80 mm x 2.20 mm Body, Ultra Lead Frame Land Grid Array (ULA) Options -1.8 Low-voltage (1.8V to 5.5V)
13
5175E-SEEPR-3/09
11. Part Marking
11.1 8-PDIP
Seal Year | Seal Week | | | |---|---|---|---|---|---|---|---| A T M L U Y W W |---|---|---|---|---|---|---|---| 1 6 B 1 |---|---|---|---|---|---|---|---| * Lot Number |---|---|---|---|---|---|---|---| | Pin 1 Indicator (Dot) SEAL YEAR 2006 0: 2010 2007 1: 2011 2008 2: 2012 2009 3: 2013 WW = SEAL WEEK 02 = Week 2 04 = Week 4 :: : :::: : :: : :::: :: 50 = Week 50 52 = Week 52
TOP MARK
Y= 6: 7: 8: 9:
Lot Number to Use ALL Characters in Marking
BOTTOM MARK No Bottom Mark
14
AT24C16B
5175E-SEEPR-3/09
AT24C16B
11.2 8-SOIC
Seal Year | Seal Week | | | |---|---|---|---|---|---|---|---| A T M L H Y W W |---|---|---|---|---|---|---|---| 1 6 B 1 |---|---|---|---|---|---|---|---| * Lot Number |---|---|---|---|---|---|---|---| | Pin 1 Indicator (Dot) SEAL YEAR 2006 0: 2010 2007 1: 2011 2008 2: 2012 2009 3: 2013 WW = SEAL WEEK 02 = Week 2 04 = Week 4 :: : :::: : :: : :::: :: 50 = Week 50 52 = Week 52
TOP MARK
Y= 6: 7: 8: 9:
Lot Number to Use ALL Characters in Marking
BOTTOM MARK No Bottom Mark
15
5175E-SEEPR-3/09
11.3
8-TSSOP
TOP MARK Pin 1 Indicator (Dot) | |---|---|---|---| * H Y W W |---|---|---|---|---| 1 6 B 1 |---|---|---|---|---|
BOTTOM MARK |---|---|---|---|---|---|---| P H |---|---|---|---|---|---|---| A A A A A A A |---|---|---|---|---|---|---| <- Pin 1 Indicator
Y= 6: 7: 8: 9:
SEAL YEAR 2006 0: 2010 2007 1: 2011 2008 2: 2012 2009 3: 2013
WW = SEAL WEEK 02 = Week 2 04 = Week 4 :: : :::: : :: : :::: :: 50 = Week 50 52 = Week 52
16
AT24C16B
5175E-SEEPR-3/09
AT24C16B
11.4 8-Ultra Thin Mini-Map
TOP MARK |---|---|---| 1 6 B |---|---|---| H 1 |---|---|---| Y X X |---|---|---| * | Pin 1 Indicator (Dot) Y = YEAR OF ASSEMBLY XX = ATMEL LOT NUMBER TO COORESPOND WITH NSEB TRACE CODE LOG BOOK. (e.g. XX = AA, AB, AC,...AX, AY, AZ) Y= 6: 7: 8: 9: SEAL YEAR 2006 0: 2010 2007 1: 2011 2008 2: 2012 2009 3: 2013
11.5
8-ULA
TOP MARK |---|---|---| 1 6 B |---|---|---| Y X X |---|---|---| * | Pin 1 Indicator (Dot) Y = BUILD YEAR 2006 = 6 2008 = 8 2007 = 7 Etc. . . XX = ATMEL LOT NUMBER TO COORESPOND WITH NSEB TRACE CODE LOG BOOK. (e.g. XX = AA, AB, AC,...AX, AY, AZ)
17
5175E-SEEPR-3/09
11.6
dBGA2
TOP MARK LINE 1-------> 16BU LINE 2-------> PYMTC |<-- Pin 1 This Corner P = COUNTRY OF ORIGIN Y = ONE DIGIT YEAR CODE 4: 2004 7: 2007 5: 2005 8: 2008 6: 2006 9: 2009 M = SEAL MONTH (USE ALPHA DESIGNATOR A-L) A = JANUARY B = FEBRUARY " " """"""" J = OCTOBER K = NOVEMBER L = DECEMBER TC = TRACE CODE (ATMEL LOT NUMBERS TO CORRESPOND WITH ATK TRACE CODE LOG BOOK)
11.7
SOT23
TOP MARK |---|---|---|---|---| Line 1 -----------> 1 6 B 1 U |---|---|---|---|---| * | XXX = Device V = Voltage Indicator U = Material Set Pin 1 Indicator (Dot) BOTTOM MARK |---|---|---|---| YMTC |---|---|---|---| Y = One Digit Year Code M = Seal Month (Use Alpha Designator A-L) TC = Trace Code
18
AT24C16B
5175E-SEEPR-3/09
AT24C16B
12. Packaging Information
12.1 8P3 - PDIP
E E1
1
N
Top View
c eA
End View
D e D1 A2 A
SYMBOL
COMMON DIMENSIONS (Unit of Measure = inches) MIN - NOM - MAX NOTE
A A2 b b2 b3 c D
0.210 0.195 0.022 0.070 0.045 0.014 0.400
-
2
0.115 0.014 0.045 0.030 0.008 0.355 0.005 0.300 0.240
0.130 0.018 0.060 0.039 0.010 0.365
-
5 6 6
3 3 4 3
b2 b3
4 PLCS
L
D1 E E1 e eA L
b
0.310 0.250 0.100 BSC 0.300 BSC
0.325 0.280
Side View
4 0.150 2
0.115
0.130
Notes:
1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA, for additional information. 2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3. 3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch. 4. E and eA measured with the leads constrained to be perpendicular to datum. 5. Pointed or rounded lead tips are preferred to ease insertion. 6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).
01/09/02 2325 Orchard Parkway San Jose, CA 95131 TITLE 8P3, 8-lead, 0.300" Wide Body, Plastic Dual In-line Package (PDIP) DRAWING NO. 8P3 REV. B
R
19
5175E-SEEPR-3/09
12.2
8S1 - JEDEC SOIC
C
1
E
E1
N
L
Top View End View
e B A
SYMBOL COMMON DIMENSIONS (Unit of Measure = mm) MIN 1.35 0.10 0.31 0.17 4.80 3.81 5.79 NOM - - - - - - - 1.27 BSC 0.40 0 - - 1.27 8 MAX 1.75 0.25 0.51 0.25 5.00 3.99 6.20 NOTE
A1
A A1 b C
D
D E1 E
Side View
e L
Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.
10/7/03 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TITLE 8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC) DRAWING NO. 8S1 REV. B
R
20
AT24C16B
5175E-SEEPR-3/09
AT24C16B
12.3 8A2 - TSSOP
3 21
Pin 1 indicator this corner
E1
E
L1
N L
Top View
End View
COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN 2.90 NOM 3.00 6.40 BSC 4.30 - 0.80 0.19 4.40 - 1.00 - 0.65 BSC 0.45 0.60 1.00 REF 0.75 4.50 1.20 1.05 0.30 4 3, 5 MAX 3.10 NOTE 2, 5
b
A
D E E1 A
e D
A2
A2 b e
Side View
L L1
Notes: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances, datums, etc. 2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15 mm (0.006 in) per side. 3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm (0.010 in) per side. 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07 mm. 5. Dimension D and E1 to be determined at Datum Plane H. 5/30/02
R
2325 Orchard Parkway San Jose, CA 95131
TITLE 8A2, 8-lead, 4.4 mm Body, Plastic Thin Shrink Small Outline Package (TSSOP)
DRAWING NO. 8A2
REV. B
21
5175E-SEEPR-3/09
12.4
8Y6 - Mini Map
A
D2
b (8X)
Pin 1 Index Area E2 E
Pin 1 ID L (8X)
D A2 A3 A1
e (6X) 1.50 REF.
COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL D E D2 E2 A A1 A2 A3 L e b 0.20 0.20 1.40 0.0 MIN NOM 2.00 BSC 3.00 BSC 1.50 0.02 0.20 REF 0.30 0.50 BSC 0.25 0.30 2 0.40 1.60 1.40 0.60 0.05 0.55 MAX NOTE
Notes:
1. This drawing is for general information only. Refer to JEDEC Drawing MO-229, for proper dimensions, tolerances, datums, etc. 2. Dimension b applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension should not be measured in that radius area. 3. Soldering the large thermal pad is optional, but not recommended. No electrical connection is accomplished to the device through this pad, so if soldered it should be tied to ground
10/16/07 REV. D
R
2325 Orchard Parkway San Jose, CA 95131
TITLE 8Y6, 8-lead 2.0 x 3.0 mm Body, 0.50 mm Pitch, Utlra Thin Mini-Map, Dual No Lead Package (DFN) ,(MLP 2x3)
DRAWING NO. 8Y6
22
AT24C16B
5175E-SEEPR-3/09
AT24C16B
12.5 5TS1 - SOT23
e1 5 4 C
E1
E
C L
L1 1 2 3
Top View
End View
b
A2
A
Seating Plane
e D
A1
Side View
NOTES: 1. This drawing is for general information only. Refer to JEDEC Drawing MO-193, Variation AB, for additional information. 2. Dimension D does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.15 mm per side. 3. The package top may be smaller than the package bottom. Dimensions D and E1 are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs, and interlead flash, but including any mismatch between the top and bottom of the plastic body. 4. These dimensions apply to the flat section of the lead between 0.08 mm and 0.15 mm from the lead tip. 5. Dimension "b" does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the "b" dimension at maximum material condition. The Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and an adjacent lead shall not be less than 0.07 mm. SYMBOL A A1 A2 c D E E1 L1 e e1 b
COMMON DIMENSIONS (Unit of Measure = mm) MIN - 0.00 0.70 0.08 NOM - - 0.90 - 2.90 BSC 2.80 BSC 1.60 BSC 0.60 REF 0.95 BSC 1.90 BSC 0.30 - 0.50 4, 5 MAX 1.10 0.10 1.00 0.20 4 2, 3 2, 3 2, 3 NOTE
6/25/03 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TITLE 5TS1, 5-lead, 1.60 mm Body, Plastic Thin Shrink Small Outline Package (SHRINK SOT) DRAWING NO. PO5TS1 REV. A
R
23
5175E-SEEPR-3/09
12.6
8U3-1 - dBGA2
E
D
1.
b
PIN 1 BALL PAD CORNER
A1 A2 A
Top View
PIN 1 BALL PAD CORNER
Side View
4
1 (d1)
2
3
d
8 e
7
6
5
COMMON DIMENSIONS (Unit of Measure = mm) (e1) SYMBOL MIN 0.71 0.10 0.40 0.20 NOM 0.81 0.15 0.45 0.25 1.50 BSC 2.00 BSC 0.50 BSC 0.25 REF 1.00 BSC 0.25 REF MAX 0.91 0.20 0.50 0.30 NOTE
Bottom View
8 SOLDER BALLS
A A1 A2 b
1. Dimension "b" is measured at the maximum solder ball diameter. This drawing is for general information only.
D E e e1 d d1
6/24/03 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TITLE 8U3-1, 8-ball, 1.50 x 2.00 mm Body, 0.50 mm pitch, Small Die Ball Grid Array Package (dBGA2) DRAWING NO. PO8U3-1 REV. A
R
24
AT24C16B
5175E-SEEPR-3/09
AT24C16B
12.7 8D3 - ULA
D 8 7 6 5
e1 b L
PIN #1 ID
E PIN #1 ID
0.10
0.15
1
2
3
4 A
A1 e
BOTTOM VIEW
b
TOP VIEW
SIDE VIEW
COMMON DIMENSIONS (Unit of Measure = mm)
SYMBOL
MIN - 0.00 1.70 2.10 0.15
NOM - - 1.80 2.20 0.20 0.40 TYP 1.20 REF
MAX 0.40 0.05 1.90 2.30 0.25
NOTE
A A1 D E b e e1 L
0.25
0.30
0.35
11/15/05 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TITLE 8D3, 8-lead (1.80 x 2.20 mm Body) Ultra Leadframe Land Grid Array (ULLGA) D3 DRAWING NO. 8D3 REV. 0
R
25
5175E-SEEPR-3/09
13. Revision History
Lit No. 5175E 5175D 5175C Date 3/2009 6/2008 11/2007 Comment Changed the Vcc to 5.5V in the test condition for Isb1 Deleted A0, A1, A2 pin-outs AT24C16B product with date code 742 or later supports 5Vcc operation Added ULA package information Removed reference to Waffle Pack Corrected Note 3 on Page 13 Added lines to Ordering Code table Initial document release
5175B 5175A
4/2007 3/2007
26
AT24C16B
5175E-SEEPR-3/09
Headquarters
Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600
International
Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581
Product Contact
Web Site www.atmel.com Technical Support s_eeprom@atmel.com Sales Contact www.atmel.com/contacts
Literature Requests www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
(c)2009 Atmel Corporation. All rights reserved. Atmel (R), Atmel logo and combinations thereof and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
5175E-SEEPR-3/09


▲Up To Search▲   

 
Price & Availability of AT24C16B09

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X